123 research outputs found

    QCD description of backward vector meson hard electroproduction

    Full text link
    We consider backward vector meson exclusive electroproduction off nucleons in the framework of collinear QCD factorization. Nucleon to vector meson transition distribution amplitudes arise as building blocks for the corresponding factorized amplitudes. In the near-backward kinematics, the suggested factorization mechanism results in the dominance of the transverse cross section of vector meson production (σTσL\sigma_T \gg \sigma_L) and in the characteristic 1/Q81/Q^8-scaling behavior of the cross section. We evaluate nucleon to vector meson TDAs in the cross-channel nucleon exchange model and present estimates of the differential cross section for backward ρ0\rho^0, ω\omega and ϕ\phi meson production off protons. The resulting cross sections are shown to be measurable in the forthcoming JLab@12 GeV experiments.Comment: 37 pages, 8 figures, 1 tabl

    Renormalization programme for effective theories

    Full text link
    We summarize our latest developments in perturbative treating the effective theories of strong interactions. We discuss the principles of constructing the mathematically correct expressions for the S-matrix elements at a given loop order and briefly review the renormalization procedure. This talk shall provide the philosophical basement as well as serve as an introduction for the material presented at this conference by A. Vereshagin and K. Semenov-Tian-Shansky.Comment: 6 pages, talk given at HSQCD 2004, Russia, May 2004, to be published in Proceeding

    Nucleon-to-pion transition distribution amplitudes and backward electroproduction of pions

    Full text link
    Baryon to meson transition distribution amplitudes (TDAs), non-diagonal matrix elements of the nonlocal three quark operator between a nucleon and a meson state, extend the concept of generalized parton distributions. These non-perturbative objects which encode the information on three quark correlations inside the nucleon may be accessed experimentally in backward meson electroproduction reactions. We suggest a general framework for modelling nucleon to pion (pi N) TDAs employing the spectral representation for pi N TDAs in terms of quadruple distributions. The factorized Ansatz for quadruple distributions with input from the soft-pion theorem for pi N TDAs is proposed. It is to be complemented with a D-term like contribution from the nucleon exchange in the cross channel. We present our estimates of the unpolarized cross section and of the transverse target single spin asymmetry for backward pion electroproduction within the QCD collinear factorization approach in which the non-perturbative part of the amplitude involves pi N TDAs. The cross section is sizable enough to be studied in high luminosity experiments such as J-lab@12GeV and EIC.Comment: proceedings of QNP 2012, Sixth International Conference on Quarks and Nuclear Physics, April 16-20, 2012, Ecole Polytechnique, Palaiseau, Franc

    Exploring the nucleon structure through GPDs and TDAs in hard exclusive processes

    Full text link
    Generalized Parton Distributions (GPDs) offer a new way to access the quark and gluon nucleon structure. We review recent progress in this domain, emphasizing the need to supplement the experimental study of deeply virtual Compton scattering by its crossed version, timelike Compton scattering. We also describe the extension of the GPD concept to three quark operators and the relevance of their nucleon to meson matrix elements, namely the transition distribution amplitudes (TDAs) which factorize in backward meson electroproduction and related processes. We discuss the main properties of the TDAs. \Comment: 8 pages; to be published in the proceedings of the conference "PHOTON 2011, International Conference on the Structure and the Interactions of the Photon ", Spa, Belgium, 22-27 Mai 201

    Crossed channel analysis of quark and gluon generalized parton distributions with helicity flip

    Full text link
    Quark and gluon helicity flip generalized parton distributions (GPDs) address the transversity quark and gluon structure of the nucleon. In order to construct a theoretically consistent parametrization of these hadronic matrix elements, we work out the set of combinations of those GPDs suitable for the SO(3){\rm SO}(3) partial wave (PW) expansion in the cross-channel. This universal result will help to build up a flexible parametrization of these important hadronic non-perturbative quantities, using for instance the approaches based on the conformal PW expansion of GPDs such as the Mellin-Barnes integral or the dual parametrization techniques.Comment: 34 pages, 1 figure, 4 table

    Toward modelization of quark and gluon transversity generalized parton distributions

    Full text link
    Quark and gluon helicity flip generalized parton distributions (GPDs) encode the information on the nucleon structure in the transversity sector. In order to build a theoretically consistent phenomenological parametrization for these hadronic matrix element within the framework of the dual parametrization of GPDs (or with the equivalent approach of the SO(3) partial waves (PW) expansion with the Mellin-Barnes integral techniques) we establish the set of combinations of parton helicity flip GPDs suitable for the expansion in the cross channel SO(3) PWs.Comment: 6 pages, DIS 2014, XXII. International Workshop on Deep-Inelastic Scattering and Related Subjects, 28 April - 2 May 2014, Warsaw, Polan

    New results in exclusive hard reactions

    Full text link
    Generalized Parton Distributions offer a new way to access the quark and gluon nucleon structure. We review recent progress in this domain, emphasizing the need to supplement the experimental study of DVCS by its crossed version, timelike Compton scattering (TCS), where data at high energy should appear thanks to the study of ultraperipheral collisions at the LHC. This will open the access to very low skewness quark and gluon GPDs. Our leading order estimates show that the factorization scale dependence of the amplitudes is quite high. This fact demands the understanding of higher order contributions with the hope that they will stabilize this scale dependence. The magnitudes of the NLO coefficient functions are not small and neither is the difference of the coefficient functions appearing respectively in the DVCS and TCS amplitudes. The conclusion is that extracting the universal GPDs from both TCS and DVCS reactions requires much care. We also describe the extension of the GPD concept to three quark operators and the relevance of their nucleon to meson matrix elements, namely the transition distribution amplitudes (TDAs) which factorize in hard exclusive pion electroproduction off a nucleon in the backward region and baryon-antibaryon annihilation into a pion and a lepton pair. We discuss the main properties of the TDAs.Comment: 4 pages, to be published in the proceedings of the 2011 Europhysics Conference on High Energy Physics-HEP 2011, July 21-27, 2011, Grenoble, Rhone-Alpes, Franc

    Bootstrap and the physical values of πN\pi N resonance parameters

    Full text link
    This is the 6th paper in the series developing the formalism to manage the effective scattering theory of strong interactions. Relying on the theoretical scheme suggested in our previous publications we concentrate here on the practical aspect and apply our technique to the elastic pion-nucleon scattering amplitude. We test numerically the pion-nucleon spectrum sum rules that follow from the tree level bootstrap constraints. We show how these constraints can be used to estimate the tensor and vector NNρNN\rho coupling constants. At last, we demonstrate that the tree-level low energy expansion coefficients computed in the framework of our approach show nice agreement with known experimental data. These results allow us to claim that the extended perturbation scheme is quite reasonable from the computational point of view.Comment: 41 pages, 7 figure

    Differential technique for the covariant orbital angular momentum operators

    Full text link
    The orbital angular momentum operator expansion turns to be a powerful tool to construct the fully covariant partial wave amplitudes of hadron decay reactions and hadron photo- and electroproduction processes. In this paper we consider a useful development of the orbital angular momentum operator expansion method. We present the differential technique allowing the direct calculation of convolutions of two orbital angular momentum operators with an arbitrary number of open Lorentz indices. This differential technique greatly simplifies calculations when the reaction subject to the partial wave analysis involves high spin particles in the initial and/or final states. We also present a useful generalization of the orbital angular momentum operators.Comment: 14 page
    corecore